Uptake/Efflux Transport of Tramadol Enantiomers and O-Desmethyl-Tramadol: Focus on P-Glycoprotein

نویسندگان

  • Mouna Kanaan
  • Youssef Daali
  • Pierre Dayer
  • Jules Desmeules
چکیده

The analgesic effect of tramadol (TMD) results from the monoaminergic effect of its two enantiomers, (+)-TMD and (-)-TMD as well as its opioid metabolite (+)-O-desmethyl-tramadol (M1). P-glycoprotein (P-gp) might be of importance in the analgesic and tolerability profile variability of TMD. Our study investigated the involvement of P-gp in the transepithelial transport of (+)-TMD, (-)-TMD and M1, using a Caco-2 cell monolayer model. The bidirectional transport of racemic TMD and M1 (1-100 microM) across the monolayers was investigated at two pH conditions (pH 6.8/7.4 and 7.4/7.4) in the presence and absence of P-gp inhibitor cyclosporine A (10 microM) and assessed with the more potent and specific P-gp inhibitor GF120918 (4 microM). Analytical quantification was performed by liquid chromatography coupled to the fluorescence detector. A net secretion of (+)-TMD, (-)-TMD and M1 was observed when a pH gradient was applied (TR: P(app)(B - A)/P(app)(A - B): 1.8-2.7; P < 0.05). However, the bidirectional transport of all compounds was equal in the non-gradient system. In the presence of P-gp inhibitors, a slight but significant increase of secretory flux was observed (up to 26%; P < 0.05) at both pH conditions. In conclusion, (+)-TMD, (-)-TMD and M1 are not P-gp substrates. However, proton-based efflux pumps may be involved in limiting the gastrointestinal absorption of TMD enantiomers as well as enhancing TMD enantiomers and M1 renal excretion. A possible involvement of uptake carriers in the transepithelial transport of TMD enantiomers and M1 is suggested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of tramadol stereoisomers on norepinephrine efflux and uptake in the rat locus coeruleus measured by real time voltammetry.

Despite its structural similarity to codeine, tramadol is an unusual analgesic whose antinociceptive efficacy is not solely a result of opioid actions but also of its apparent capacity to block monoamine uptake. Tramadol is a mixture of stereoisomers. In this study, we have examined the actions of racemic, (+)- and (-)-tramadol, in addition to O-desmethyltramadol (the main human metabolite), on...

متن کامل

Actions of tramadol, its enantiomers and principal metabolite, O-desmethyltramadol, on serotonin (5-HT) efflux and uptake in the rat dorsal raphe nucleus.

Tramadol is an atypical centrally acting analgesic agent with relatively weak opioid receptor affinity in comparison with its antinociceptive efficacy. Evidence suggests that block of monoamine uptake may contribute to its analgesic actions. Therefore, we have examined the actions of (+/-)-tramadol, (+)-tramadol, (-)-tramadol and O-desmethyltramadol (M1 metabolite) on electrically evoked 5-HT e...

متن کامل

Unexceptional seizure potential of tramadol or its enantiomers or metabolites in mice.

Tramadol is one of the most widely used centrally acting analgesics worldwide. Because of its multimodal analgesic mechanism (opioid plus nonopioid), the adverse effects profile of tramadol, similar to its analgesic profile, can be atypical compared with single-mechanism opioid analgesics. The comparison is often favorable (e.g., less respiratory depression or abuse), but it is sometimes cited ...

متن کامل

Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes.

The influence of CYP2D6 genotype and CYP2D6 inhibitors on enantiomeric plasma levels of tramadol and O-desmethyltramadol as well as response to tramadol was investigated. One hundred and seventy-four patients received one hundred intravenous tramadol 3 mg/kg for postoperative analgesia. Blood samples drawn 30, 90, and 180 min after administration were analyzed for plasma concentrations of the e...

متن کامل

Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human liver microsomes.

The metabolism of cis-tramadol has been studied in human liver microsomes and in cDNA-expressed human cytochrome P-450 (CYP) isoforms. Human liver microsomes catalyzed the NADPH-dependent metabolism of tramadol to the two primary tramadol metabolites, namely, O-desmethyl-tramadol (metabolite M1) and N-desmethyl-tramadol (metabolite M2). In addition, tramadol was also metabolized to two minor se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 105  شماره 

صفحات  -

تاریخ انتشار 2009